PROGRAMME

Below you can find the 2023 programme.

Application for CME recognition has been submitted to:

  • the European Accreditation Council for Continuing Medical Education (EACCME), an institution of the European Union of Medical Specialists (UEMS). EACCME credits are recognised by the American Medical Association towards the Physician’s Recognition Award (PRA)
  • the European Board for Accreditation in Medical Physics

colour code:

Main track > lectures in plenary room = Greepzaal MUMC+
Clinical track > lectures in breakout room = Groene zaal Maastricht University UNS50

WEDNESDAY 28 JUNE 2023 

Topic of the day: Radiomics

10:00-10:15 Welcome and course introduction – Philippe Lambin

10:15-11:00 Do we need AI in a Radiology Department – Joachim Wildberger

11:00-11:45 Harmonizing datasets for radiomics studies – Adrien Depeursinge

11:00-11:45 Is Radiomics still relevant? – Joe Deasy

11:45-12:30 The state of standardized radiomics – Alexander Zwanenburg

11:45-12:30 Radiomix in a radiotherapy context – Olivier Morin

12:30-13:30 Lunch

13:30-17:45 Hands-on radiomics workshop for scientists and beginners in computer rooms at UM

THURSDAY 29 JUNE 2023

Topic of the day: Deep Learning

09:00-09:15 Wednesday recap and discussion – Henry Woodruff

09:15-10:00 DL works… how do we implement it? – Bram van Ginneken

10:00-10:45 Open source auto segmentation and radiomics tools for machine learning on images – Joe Deasy

10:45-11:00 Discussion

11:00-11:30 Coffee break

11:30-12:15 Deep learning in a clinic – Andrew Maidment

12:15-13:15 Lunch

13:15-17:15 Hands-on deep learning workshop for scientists and beginners in computer rooms at UM

FRIDAY 30 JUNE 2023

Topic of the day: Synthetic Data

09:00-09:15 Thursday recap and discussion – Bram van Ginneken

09:15-10:00 GANS et al – the solution to lack of data? – Guang Yang

10:00-10:45 Virtual Clinical Trials – Andrew Maidment

10:45-11:00 Discussion

11:00-11:30 Coffee break

11:30-12:15 Synthetic Data – can we trust it? – Bram van Ginneken

11:30-12:15 Sample size calculation – Shahab Jolani

12:15-13:15 Lunch

13:15-17:15 Hackathon at The D-Lab, Maastricht University – Henry Woodruf

13:15-17:15 OMOP CDM for dataset standardization (lecture and workshop) – Anshu Ankolekar, Hamza Khan

SATURDAY 1 JULY 2023

Topic of the day: Prospective Clinical Trials

09:00-09:30 Friday recap and discussion – Olivier Morin

09:30-10:15 Summary of the ongoing and concluded prospective clinical trials – Joe Deasy

10:15-10:45 Current state of the law regarding data – David Townend

10:45-11:15 Coffee break

11:15-11:45 Closing statements – Henry Woodruff

11:45-12:15 AI4Imaging competition

12:15-13:00 Lunch

13:00-17:00 Hackathon at The D-Lab, Maastricht University

13:00-17:00 Design a clinical trial – Philippe Lambin

COURSE PRESENTATIONS

Delegates from the 2023 edition can access the presentations here.
The folder is password protected. Please check your mailbox.

OVERVIEW OF STUDIES AVAILABLE FOR MODEL VALIDATION

Tumor siteModalityOutcomePatient number (N)
BoneScintigraphyRadiologist score1000
BrainMRIOS175
BrainMRIOS, radiologist score65
BreastMammoPathology6671
BreastCESMRadiologist score1883
BreastCTPathology220
HNCT+ HX4-PETHypoxia34
HNCECTOS, PFS311
HNFMISO-CT, FDG-PETHypoxia86
HNHX4-CT, FDG-PETHypoxia19
HNHX4-CT, FDG-PETOS, PFS, Hypoxia19
HNHX4-CT, FDG-PETOS, PFS, Hypoxia12
HNCT, FDG-PETIHC(Pimo staining)71
HNCTOS, PFS517
HNCT OS, PFS850
HNCTOS130
KidneyCTPathology136
LiverCTOS, PFS420
LiverCT, MRIOS, PFS97
LungCTOS422
LungCBCTPathology, OS, PFS71
LungCTRadiologist score1010
LungCBCTOS577
LungFAZA-CTHypoxia36
LungHX4-CT, FDG-PETOS, Hypoxia30
LungHX4-CT, FDG-PETOS, Hypoxa25
LungCTOS129
LungCTIHC53
LungCT, FDG-PETRadiologist score34
LungCTHistology89
LungCTHistology43
LungCTOS101
LungCTBiopsy139
LungCTBiopsy649
LungCTPathology805
Lung, Liver, Kidney, BoneCTLesion bounding boxes4427
ProstateMRI T2w, ADCGleason140

LATEST ARTICLES

Some interesting articles worth reading before attending the course:

Huang, S., Pareek, A., Jensen, M., Lungren, M. P., Yeung, S., & Chaudhari, A. S. (2023). Self-supervised learning for medical image classification: A systematic review and implementation guidelines. Npj Digital Medicine, 6(1), 1-16. https://doi.org/10.1038/s41746-023-00811-0
 
Tang, Y., Yang, D., Li, W., Roth, H. R., Landman, B., Xu, D., … & Hatamizadeh, A. (2022). Self-supervised pre-training of swin transformers for 3d medical image analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 20730-20740)
 
Ben Glocker,∗ Charles Jones, Mélanie Bernhardt, and Stefan Winzeck (2023) Algorithmic encoding of protected characteristics in chest
X-ray disease detection models https://doi.org/10.1016/j.ebiom.2023.104467

 

Alexander Kirillo, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland,…& Ross Girshick. (2023) Segment Anything https://doi.org/10.48550/arXiv.2304.02643

 

Jeroen van der Laak, Geert Litjens, and Francesco Ciompi. (2023). Deep learning in histopathology: the path to the clinic https://doi.org/10.1038/s41591-021-01343-4

 

Ning Mao, Haicheng Zhang, Yi Dai, Qin Li, Fan Lin,…& Heng Ma. (2022). Attention-based deep learning for breast lesions classification on contrast enhanced spectral mammography: a multicentre study https://doi.org/10.1038/s41416-022-02092-y

 

Tiantian Zheng, Fan Lin, Xianglin Li, … & Ning Mao. (2023).,Deep learning-enabled fully automated pipeline system for segmentation and classification of single-mass breast lesions using contrast-enhanced mammography: a prospective, multicentre study https://doi.org/10.1016/j.eclinm.2023.101913

 

Jun Ma and Bo Wang.(2023). Segment Anything in Medical Images. https://doi.org/10.48550/arXiv.2304.12306

 

Kaiming He, Xinlei Chen,  Saining Xie, Yanghao Li, Piotr Doll´ar, Ross Girshick. (2021). Masked Autoencoders Are Scalable Vision Learners https://doi.org/10.48550/arXiv.2111.06377

 

Xueyan Mei, Zelong Liu, Ayushi Singh, Marcia Lange,… & Yang Yang. (2023). Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data. https://doi.org/10.1038/s41467-023-37720-5

 

Tian-yi Xia, Zheng-hao Zhou, Xiang-pan Meng, Jun-hao Zha,…& Sheng-hong Ju. (2023). Predicting Microvascular Invasion in Hepatocellular Carcinoma Using CT-based Radiomics Model. https://doi.org/10.1148/radiol.222729